A High-Voltage Potassium-Organic Radical Battery Enabled by PTVE Cathode
LUO Yu-wen1,4,5,6, SHI Ji-fu2, LEI Kai-xiang3, XU Gang1,4,5
1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; 2. Jinan University, Guangzhou 510632, China; 3. Nankai University, Tianjin 300071, China; 4. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; 5. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; 6. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Potassium/potassium-ion based electrochemical energy storage systems have many advantanges, such as high abundance of potassium, low equilibrium potential of K+/K, high ionic conductivity of K+, and so on. Potassium-ion battery/supercapacitor, K//O2 battery and K//S battery are catching massive attentions and facing challenge of lacking high-voltage potassium-ion storage materials for practical application. Thus, it is of great significance to construction of novel potassium/ potassium-ion based electrochemical energy storage systems. In this work, a potassium-organic radical battery of K//PTVE was successfully constructed, and its electrochemical performance was investigated. K//PTVE showed high discharge voltage of 3.63 V, good rate capability and cycle stability.
PRAMUDITA J C, SEHRAWAT D, GOONETILLE D, et al.An initial review of the status of electrode materials for potassiumion batteries[J]. Advanced energy materials, 2017, 7(24): 1602911. DOI: 10.1002/aenm.201602911.
[2]
KUBOTA K, DAHBI M, HOSAKA T, et al.Towards K-ion and Na-ion batteries as “beyond Li-ion”[J]. The chemical record, 2018, 18(4): 459-479. DOI: 10.1002/tcr. 201700057.
[3]
MATSUDA Y, NAKASHIMA H, MORITA M, et al.Behavior of some ions in mixed organic electrolytes of high energy density batteries[J]. Journal of the electrochemical society, 1981, 128(12): 2552-2556. DOI: 10.1149/1.2127289.
[4]
LEI K X, LI F J, MU C N, et al.High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes[J]. Energy & environmental science, 2017, 10(2): 552-557. DOI: 10.1039/c6ee03185d.
[5]
PEI Y H, MU C N, LI H X, et al.Low-cost K4Fe(CN)6 as a high-voltage cathode for potassium-ion batteries[J]. Chemsuschem, 2018, 11(8): 1285-1289. DOI: 10.1002/ cssc.201800057.
[6]
LEI K X, WANG C C, LIU L J, et al.A Porous network of bismuth used as the anode material for high-energy- density potassium-ion batteries[J]. Angewandte chemie international edition, 2018, 57(17): 4687-4691. DOI: 10.1002/anie.201801389.
[7]
JIAN Z L, LUO W, JI X L.Carbon electrodes for K-ion batteries[J]. Journal of the American chemical society, 2015, 137(36): 11566-11569. DOI: 10.1021/jacs.5b06809.
[8]
LIU C L, LUO S H, HUANG H B.K0.67Ni0.17Co0.17Mn0.66O2: a cathode material for potassium-ion battery[J]. Electro- chemistry communications, 2017, 82: 150-154. DOI: 10.1016/j.elecom.2017.08.008.
[9]
WANG X P, XU X M, NIU C J, et al.Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries[J]. Nano letters, 2017, 17(1): 544-550. DOI: 10.1021/acs.nanolett.6b04611.
[10]
FAN L, MA R F, WANG J, et al.An ultrafast and highly stable potassium-organic battery[J]. Advanced materials, 2018, 30(51): 1805486. DOI: 10.1002/adma.201805486.
[11]
FAN L, LIN K R, WANG J, et al.A Nonaqueous potassium-based battery-supercapacitor hybrid device[J]. Advanced materials, 2018, 30(20): 1800804. DOI: 10.1002/adma.201800804.
[12]
REINSBERG P H, KOELLISCH A, BAWOL P P, et al.K-O2 electrochemistry: achieving highly reversible peroxide formation[J]. Physical chemistry chemical physics, 2019, 21(8): 4286-4294. DOI: 10.1039/c8cp06362a.
[13]
HONG X D, MEI J, WEN L, et al.Nonlithium metal- sulfur batteries: steps toward a leap[J]. Advanced materials, 2019, 31(5): 1802822. DOI: 10.1002/adma.201802822.
[14]
CHEN Y N, LUO W, CARTER M, et al.Organic electrode for non-aqueous potassium-ion batteries[J]. Nano energy, 2015, 18: 205-211. DOI: 10.1016/j.nanoen.2015.10.015.
[15]
JIAN Z L, LIANG Y L, RODRIGUEZ-PÉREZ I A, et al. Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries[J]. Electrochemistry communications, 2016, 71: 5-8. DOI: 10.1016/j.elecom.2016.07.011.
[16]
ZHAO Q, WANG J B, LU Y, et al.Oxocarbon salts for fast rechargeable batteries[J]. Angewandte chemie international edition, 2016, 55(40): 12528-12532. DOI: 10.1002/anie.201607194.
[17]
LUO Y W, LIU L J, LEI K X, et al.A nonaqueous potassiumion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate[J]. Chemical science, 2019, 10(7): 2048-2052. DOI: 10.1039/c8sc04489a.
[18]
FRIEBE C, SCHUBERT U S.High-power-density organic radical batteries[J]. Topic in current chemistry, 2017, 375(1): 19. DOI: 10.1007/s41061-017-0103-1.
[19]
LEE S, KWON G, KU K, et al.Recent progress in organic electrodes for Li and Na rechargeable batteries[J]. Advanced materials, 2018, 30(42): 1704682. DOI: 10.1002/adma.201704682.
[20]
ZHAO Q, LU Y, CHEN J.Advanced organic electrode materials for rechargeable sodium-ion batteries[J]. Advanced energy materials, 2017, 7(8): 1601792. DOI: 10.1002/aenm.201601792.
[21]
FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al.Gaussian 09, revision A.02[R]. Wallingford, CT: Gaussian Inc., 2009.
[22]
HEHRE W J, DITCHFIELD R, POPLE J A.Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules[J]. Journal of chemical physics, 1972, 56(5): 2257-2261. DOI: 10.1063/1.1677527.
[23]
SUGURO M, IWASA S, KUSACHI Y, et al.Cationic polymerization of poly(vinyl ether) bearing a TEMPO radical: a new cathode-active material for organic radical batteries[J]. Macromolecular rapid communications, 2007, 28(18/19): 1929-1933. DOI: 10.1002/marc.200700300.
[24]
GUO W, SU J, LI Y H, et al.Nitroxide radical polymer/graphene nanocomposite as an improved cathode material for rechargeable lithium batteries[J]. Electrochimica acta, 2012, 72: 81-86. DOI: 10.1016/j. electacta.2012.03.162.
[25]
MA J, ZHOU E, FAN C, et al.Endowing CuTCNQ with a new role: a high-capacity cathode for K-ion batteries[J]. Chemical communications, 2018, 54(44): 5578-5581. DOI: 10.1039/c8cc00802g.
[26]
DING Y, LI Y F, YU G H.Exploring bio-inspired quinone-based organic redox flow batteries: a combined experimental and computational study[J]. Chem, 2016, 1(5): 790-801. DOI: 10.1016/j.chempr.2016.09.004.
[27]
GAO H C, XUE L G, XIN S, et al.A high-energy- density potassium battery with a polymer-gel electrolyte and a polyaniline cathode[J]. Angewandte chemie international edition, 2018, 57(19): 5449-5453. DOI: 10.1002/anie.201802248.
[28]
LI X L, LI D, SONG D W, et al.Unravelling the structure and electrochemical performance of Li-Cr-Mn-O cathodes: from spinel to layered[J]. ACS applied materials & interfaces, 2018, 10(10): 8827-8835. DOI: 10.1021/acsami.7b18097.
[29]
ZHU Y J, XU Y H, LIU Y H, et al.Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries[J]. Nanoscale, 2013, 5(2): 780-787. DOI: 10.1039/c2nr32758a.
[30]
IWASA S, NISHI T, NAKAMURA S.Effect of charge transportation on high-rate discharge properties of organic radical batteries with gel-state cathode[J]. Journal of electroanalytical chemistry, 2017, 805: 171-176. DOI: 10.1016/j.jelechem.2017.10.008.