Research Status of Capacity Configuration and Optimal Operation for Multi-Energy Complementary Distributed Energy System
CUI Qiong1,2, HUANG Lei1,2,3, SHU Jie1,2, WANG Hao1,2, WU Chang-hong1,2
1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; 2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:As an important physical carrier of energy internet, multi-energy complementary distributed energy system is an important means to promote the sustainable development of energy. In this paper, the relationship between multi-energy complementary distributed energy system and energy Internet was reviewed. Based on the current development state of distributed energy systems, the research status and future development trend of capacity configuration and optimal operation of multi-energy complementary distributed energy system were particularly clarified.
崔琼, 黄磊, 舒杰, 王浩, 吴昌宏. 多能互补分布式能源系统容量配置和优化运行研究现状[J]. 新能源进展, 2019, 7(3): 263-270.
CUI Qiong, HUANG Lei, SHU Jie, WANG Hao, WU Chang-hong. Research Status of Capacity Configuration and Optimal Operation for Multi-Energy Complementary Distributed Energy System. Advances in N&R Energy, 2019, 7(3): 263-270.
CHO H, SMITH A D, MAGO P.Combined cooling, heating and power: a review of performance improvement and optimization[J]. Applied energy, 2014, 136: 168-185. DOI: 10.1016/j.apenergy.2014.08.107.
WEBER C, SHAH N.Optimisation based design of a district energy system for an eco-town in the united kingdom[J]. Energy, 2011, 36(2): 1292-1308. DOI: 10.1016/j.energy.2010.11.014.
[18]
OMU A, CHOUDHARY R, BOIES A.Distributed energy resource system optimisation using mixed integer linear programming[J]. Energy policy, 2013, 61: 249-266. DOI: 10.1016/j.enpol.2013.05.009.
DESHMUKH M K, DESHMUKH S S.Modeling of hybrid renewable energy systems[J]. Renewable and sustainable energy reviews, 2008, 12(1): 235-249. DOI: 10.1016/j.rser.2006.07.011.
[22]
WANG L, YEH T H, LEE W J, et al.Benefit evaluation of wind turbine generators in wind farms using capacity-factor analysis and economic-cost methods[J]. IEEE transactions on power systems, 2009, 24(2): 692-704. DOI: 10.1109/TPWRS.2009.2016519.
[23]
ZHOU W, LOU C Z, LI Z S, et al.Current status of research on optimum sizing of stand-alone hybrid solar- wind power generation systems[J]. Applied energy, 2010, 87(2): 380-389. DOI: 10.1016/j.apenergy.2009.08.012.
[24]
YANG H X, ZHOU W, LU L, et al.Optimal sizing method for stand-alone hybrid solar-wind system with LPSP technology by using genetic algorithm[J]. Solar energy, 2008, 82(4): 354-367. DOI: 10.1016/j.solener. 2007.08.005.
[25]
YANG H X, LU L, ZHOU W.A novel optimization sizing model for hybrid solar-wind power generation system[J]. Solar energy, 2007, 81(1): 76-84. DOI: 10.1016/j.solener.2006.06.010.
[26]
SHIRVANI M, MEMARIPOUR A, ABDOLLAHI M, et al.Calculation of generation system reliability index: expected energy not served[J]. Life science journal, 2012, 9(4): 344.
[27]
NUGRAHA P Y, WIDYOTRIATMO A, LEKSONO E.Optimization of a grid-tied microgrid configuration using dual storage systems[C]//Proceedings of the 15th International Conference on Control, Automation and Systems. Busan, South Korea: IEEE, 2015. DOI: 10.1109/ICCAS.2015.7364896.
[28]
PELET X, FAVRAT D, LEYLAND G.Multiobjective optimisation of integrated energy systems for remote communities considering economics and CO2 emissions[J]. International journal of thermal sciences, 2005, 44(12): 1180-1189. DOI: 10.1016/j.ijthermalsci.2005.09.006.
[29]
BOROWY B S, SALAMEH Z M.Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system[J]. IEEE transactions on energy conversion, 1996, 11(2): 367-375. DOI: 10.1109/60.507648.
JAYASEKARA S, HALGAMUGE S K, ATTALAGE R A, et al.Optimum sizing and tracking of combined cooling heating and power systems for bulk energy consumers[J]. Applied energy, 2014, 118: 124-134. DOI: 10.1016/j.apenergy.2013.12.040.
JALALZADEH-AZAR A A. A comparison of electrical- and thermal-load-following CHP systems[J]. ASHRAE transactions, 2004, 110(2): 85-94.
[36]
WANG J J, ZHANG C F, JING Y Y.Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China[J]. Applied energy, 2010, 87(4): 1247-1259. DOI: 10.1016/j.apenergy.2009. 06.027.
[37]
FANG F, WANG Q H, SHI Y.A novel optimal operational strategy for the CCHP system based on two operating modes[J]. IEEE transactions on power systems, 2012, 27(2): 1032-1041. DOI: 10.1109/TPWRS.2011.2175490.
[38]
KAVVADIAS K C, MAROULIS Z B.Multi-objective optimization of a trigeneration plant[J]. Energy policy, 2010, 38(2): 945-954. DOI: 10.1016/j.enpol.2009.10.046.
JU L W, TAN Z F, LI H H, et al.Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China[J]. Energy, 2016, 111: 322-340. DOI: 10.1016/j.energy.2016.05.085.
[43]
孙作潇. 冷热电联供型微电网多目标动态优化调度[D]. 杭州: 杭州电子科技大学, 2017.
[44]
LIU X.Optimization of a combined heat and power system with wind turbines[J]. International journal of electrical power & energy systems, 2012, 43(1): 1421-1426. DOI: 10.1016/j.ijepes.2012.07.022.
[45]
HU M Q, CHO H.A probability constrained multi- objective optimization model for CCHP system operation decision support[J]. Applied energy, 2014, 116: 230-242. DOI: 10.1016/j.apenergy.2013.11.065.
[46]
LIU M X, SHI Y, FANG F.A new operation strategy for CCHP systems with hybrid chillers[J]. Applied energy, 2012, 95: 164-173. DOI: 10.1016/j.apenergy.2012.02.035.
[47]
WU J Y, WANG J L, LI S.Multi-objective optimal operation strategy study of micro-CCHP system[J]. Energy, 2012, 48(1): 472-483. DOI: 10.1016/j.energy.2012.10.013.
[48]
FACCI A L, ANDREASSI L, UBERTINI S.Optimization of CHCP (combined heat power and cooling) systems operation strategy using dynamic programming[J]. Energy, 2014, 66: 387-400. DOI: 10.1016/j.energy.2013.12.069.
[49]
BYUN J, HONG I, KANG B, et al.A smart energy distribution and management system for renewable energy distribution and context-aware services based on user patterns and load forecasting[J]. IEEE transactions on consumer electronics, 2011, 57(2): 436-444. DOI: 10.1109/TCE.2011.5955177.
[50]
OLIVARES D E, MEHRIZI-SANI A, ETEMADI A H, et al.Trends in microgrid control[J]. IEEE transactions on smart grid, 2014, 5(4): 1905-1919. DOI: 10.1109/TSG. 2013.2295514.
[51]
KANG L G, YANG J H, AN Q S, et al.Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff[J]. Applied energy, 2016, 194(5): 454-466. DOI: 10.1016/j.apenergy.2016.07.017.
[52]
BISCHI A, TACCARI L, MARTELLI E, et al.A detailed MILP optimization model for combined cooling, heat and power system operation planning[J]. Energy, 2014, 74: 12-26. DOI: 10.1016/j.energy.2014.02.042.
MORADI M H, HAJINAZARI M, JAMASB S, et al.An energy management system (EMS) strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing fuzzy programming[J]. Energy, 2013, 49: 86-101. DOI: 10.1016/j.energy.2012.10.005.