Abstract:In the laboratory scale, a dewar flask heat insulation equipment was designed to conduct the self-heating experiment of rice straw at room temperature, and the influence of the moisture (50%, 60% and 70%, expressed as dry basis) and particle size (≤ 2 mm and 0.2 mm) were studied. The results indicated that the internal temperature of the sample increased with the moisture content, while decreased with the particle size. The increase of moisture, ash content, pH value and the change of calorific value reflected that self-heating led to obvious losses of heat and mass. Therefore controlling the moisture content and particle size reasonably is crucial to prevent the occurrence of self-heating.
HE X, LAU A K, SOKHANSANJ S, et al. Dry matter losses in combination with gaseous emissions during the storage of forest residues[J]. Fuel, 2012, 95: 662-664. DOI: 10.1016/j.fuel.2011.12.027.
[5]
EMERY I R, MOSIER N S. The impact of dry matter loss during herbaceous biomass storage on net greenhouse gas emissions from biofuels production[J]. Biomass and bioenergy, 2012, 39: 237-246. DOI: 10.1016/j.biombioe. 2012.01.004.
[6]
PHANPHANICH M, MANI S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass[J]. Bioresource technology, 2011, 102(2): 1246-1253. DOI: 10.1016/j.biortech.2010.08.028.
[7]
PIMCHUAI A, DUTTA A, BASU P. Torrefaction of agriculture residue to enhance combustible properties[J]. Energy & fuels, 2010, 24(9): 4638-4645. DOI: 10.1021/ ef901168f.
[8]
DARR M J, SHAH A. Biomass storage: an update on industrial solutions for baled biomass feedstocks[J]. Biofuels, 2012, 3(3): 321-332. DOI: 10.4155/bfs.12.23.
[9]
ERIKSSON A. Energy efficient storage of biomass at vattenfall heat and power plant[D]. Uppsala: Swedish University of Agricultural Sciences, 2011: 5.
[10]
THÖRNQVIST T. Drying and storage of forest residues for energy production[J]. Biomass, 1985, 7(2): 125-134. DOI: 10.1016/0144-4565(85)90038-1.
[11]
KOPPEJAN J, LÖNNERMARK A, PERSSON H, et al. Health and safety aspects of solid biomass storage, transportation and feeding[R]. Report of International Energy Agency Bioenergy, 2013.
[12]
CHOI H L, RICHARD T L, AHN H K. Composting high moisture materials: biodrying poultry manure in a sequentially fed reactor[J]. Compost science & utilization, 2001, 9(4): 303-311. DOI: 10.1080/1065657X.2001.10702049.
[13]
FESTENSTEIN G N, LACEY J, SKINNER F A, et al. Self-heating of hay and grain in Dewar flasks and the development of farmer’s lung antigens[J]. Journal of general microbiology, 1965, 41(3): 380-407. DOI: 10.1099/00221287-41-3-389.
[14]
REDDY A P, JENKINS B M, VANDERGHEYNST J S. The critical moisture range for rapid microbial decomposition of rice straw during storage[J]. Transactions of the ASABE, 2009, 52(2): 673-677. DOI: 10.13031/2013.26806.
[15]
BUGGELN R, RYNK R. Self-heating in yard trimmings: conditions leading to spontaneous combustion[J]. Compost science & utilization, 2002, 10(2): 162-182. DOI: 10.1080/1065657X.2002.10702076.
British Standards Institution. Soil improvers and growing media. Determination of pH: BS EN 13037:2000[S]. London: British Standards Institution, 2000.
[20]
DELLA ZASSA M, BIASIN A, ZERLOTTIN M, et al. Self-heating of dried industrial wastewater sludge: lab-scale investigation of supporting conditions[J]. Waste management, 2013, 33(6): 1469-1477. DOI: 10.1016/j. wasman.2013.02.010.
[21]
KUBLER H. Heat generating processes as cause of spontaneous ignition in forest products[J]. Forest products abstracts, 1987, 10(11): 299-322.
[22]
RYCKEBOER J, MERGAERT J, VAES K, et al. A survey of bacteria and fungi occurring during composting and self-heating processes[J]. Annals of microbiology, 2003, 53(4): 349-410.
[23]
JIRJIS R. Effects of particle size and pile height on storage and fuel quality of comminuted Salix viminalis[J]. Biomass and bioenergy, 2005, 28(2): 193-201. DOI: 10.1016/j.biombioe.2004.08.014.
[24]
HAKKILA P. Utilization of residual forest biomass[M]. Berlin Heidelberg: Springer-Verlag, 1989. DOI: 10.1007/ 978-3-642-74072-5_8.
[25]
CASAL M D, GIL M V, PEVIDA C, et al. Influence of storage time on the quality and combustion behaviour of pine woodchips[J]. Energy, 2010, 35(7): 3066-3071. DOI: 10.1016/j.energy.2010.03.048.